Search results for "nanoporous materials"

showing 3 items of 3 documents

Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions

2007

Polymeric nanopores with fixed charges show ionic selectivity when immersed in aqueous electrolyte solutions. The understanding of the electrical interaction between these charges and the mobile ions confined in the inside nanopore solution is the key issue in the design of potential applications. The authors have theoretically described the effects that spatially inhomogeneous fixed charge distributions exert on the ionic transport and selectivity properties of the nanopore. A comprehensive set of one-dimensional distributions including the skin, core, cluster, and asymmetric cases are analyzed on the basis of the Nernst-Planck equations. Current-voltage curves, nanopore potentials, and tr…

Models MolecularMaterials scienceStatic ElectricityGeneral Physics and AstronomyIonic bondingNanotechnologyElectrolyteIon ChannelsNanoporous materialsIonQuantitative Biology::Subcellular ProcessesElectrolytesBiopolymersIonic conductivityStatic electricityCluster (physics)Ionic conductivityComputer SimulationPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]AnisotropyIon TransportUNESCO::FÍSICA::Química físicaNanostructuresNanoporeModels ChemicalPolymer solutionsChemical physicsNanoporous materials ; Polymer solutions ; Electrolytes ; Ionic conductivityAnisotropyIon Channel GatingPorosityThe Journal of Chemical Physics
researchProduct

Sponge‐Like Behaviour in Isoreticular Cu(Gly‐His‐X) Peptide‐Based Porous Materials

2015

We report two isoreticular 3D peptide-based porous frameworks formed by coordination of the tripeptides Gly-L-His-Gly and Gly-L-His-L-Lys to Cu(II) which display sponge-like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2 O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbo…

postsynthetic modificationsPeptideTripeptideCatalysismetal–organic frameworksAdsorptionMetalloproteinsPolymer chemistryUreaMoleculePorositywater adsorptionchemistry.chemical_classificationMolecular Structurenanoporous materialsOrganic ChemistrySorptionGeneral ChemistryFull PaperschemistryChemical engineeringpeptidesMetal-organic frameworkAdsorptionPorous mediumOligopeptidesPorosityCopperChemistry – A European Journal
researchProduct

Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

2012

Abstract Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditi…

ArgonMaterials sciencebusiness.product_categoryNano ExpressHydrogenRaman dispersionchemistry.chemical_elementNanochemistryNanotechnologyChemical vapor depositionCondensed Matter PhysicsNanoporous materialsSurface tensionsymbols.namesakeNanoporeMaterials Science(all)chemistryChemical engineeringMicrofibersymbolsChemical vapor depositionGeneral Materials SciencePhysics::Atomic PhysicsbusinessRaman spectroscopy
researchProduct